Pre-class Warm-up!!

 A particle moves along a path $c(t)=\left(t^{3}-3,2 t^{2}+1\right)$What is the speed of the particle at $t=1$?
a. 3 units $/ \mathrm{sec}$
b. 4 units / sec
c. 5 units $/ \sec \sqrt{ } c^{\prime}(t)=\left(3 t^{2}, 4 t\right)$
d. $\sqrt{ } 5$ units $/ \mathrm{sec}$ $c^{\prime}(1)=(3,4)$
e. None of the above. $\| c^{\prime}(1)=\sqrt{3^{2}+4^{2}}$ $=5$
4.1 Paths again. Acceleration and Newton's Second Law

We recall:

- a path is a mapping $c:[a, b]->R^{\wedge} n$
- we can differentiate it to get a velocity vector

$$
v=c^{\prime}(t)
$$

- it satisfies some rules:
sum rule, scalar multiplication rule, chain rule and NEW dot product rule, cross product rule
- Also new: acceleration vector. $a=v^{\prime}(t)=c^{\prime \prime}(t)$
- Newton: force $=$ mass \times acceleration

Terminology I will not use: regular path.
A regular path has $c^{\prime}(t) \neq 0$
$c(t)=t^{3}$ is not regular.

Typical HW questions:
Find the velocity and acceleration vectors
Verify the rules.
Given values of $c^{\prime \prime}(t), c^{\prime}(0)$ and $c(0)$ find c.
Find the force on a particle under some given acceleration.
Rules: $1 \cdot(a c+b d)^{\prime}=a c^{\prime}+b d^{\prime}$
3. $\frac{d}{d t}(c \cdot d)=c^{\prime} \cdot d+c \cdot d^{\prime}$
4. If $c, d: \mathbb{R} \rightarrow \mathbb{R}^{3}$ then
$(c \times d)^{\prime}=c^{\prime} \times d+c \times d^{\prime}$
2. Chain rule

Examples:

1. (Like qu 20) If $\|c(t)\|$ is constant then $c^{\prime}(t)$ is perpendicular to $c(t)$ for all t.

Solution. $c(t) \cdot c(t)=\|c(t)\|^{2}$ is constant

$$
\begin{gathered}
\frac{d}{d t}(c(t) \cdot c(t))=c^{\prime}(t) \cdot c(t)+c(t) \cdot c^{\prime}(t) \\
=2 c^{\prime}(t) \cdot c(t)=0
\end{gathered}
$$

Thus $c^{\prime}(t)$ is perpendicular to $c(t)_{\square}$.

Example: find the force on a particle in circular motion, of mass 1 , tracing a path $R(t)=(\cos t, \sin t)$
Or mass $=3, R(t)=(\cos 2 t, \sin 2 t)$.
Solution. $r=R^{\prime}(t)=(-2 \sin 2 t, 2 \cos 2 t)$ $a=R^{\prime \prime}(t)=(-4 \cos 2 t ; 4 \sin 2 t)$.
Force $3(-4 \cos 2 t,-4 \sin 2 t$.

Force $=$ Centripetal force.

Like questions 13, 14, 23.
The acceleration, initial velocity and initial position of a particle are

$$
a(t)=(1,2,3), v(0)=(2,-1,1), c(0)=(3,2,1) .
$$

Find $c(t)$.
Solution $a=v^{\prime}$, so $v=\int a$

$$
\begin{aligned}
& =(t, 2 t, 3 t)+v(0)=(t, 2 t, 3 t)+(2,-1,1) \\
& c=\int v=\left(\frac{t^{2}}{2}, t^{2}, \frac{3 t^{2}}{2}\right)+(2 t,-t, t) \\
& \quad+\text { constant }(=c(0)) \\
& \simeq\left(3+2 t+\frac{t^{2}}{2}, 2-t+t^{2}, 1+t+\frac{3 t^{2}}{2}\right)
\end{aligned}
$$

